Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844241

RESUMO

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Assuntos
Anexina A2 , Animais , Camundongos , Anexina A2/genética , Apoptose , Células Epiteliais , Epitélio , Espécies Reativas de Oxigênio
2.
Cell Rep ; 40(2): 111078, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830802

RESUMO

In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.


Assuntos
Sinalização do Cálcio , Peixe-Zebra , Animais , Cálcio/metabolismo , Movimento Celular , Cães , Células Epiteliais/metabolismo , Células Madin Darby de Rim Canino , Peixe-Zebra/metabolismo
3.
Cancer Sci ; 113(11): 3710-3721, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35816400

RESUMO

At the initial stage of carcinogenesis, oncogenic transformation occurs in single cells within epithelial layers. However, the behavior and fate of the newly emerging transformed cells remain enigmatic. Here, using originally established mouse models, we investigate the fate of RasV12-transformed cells that appear in a mosaic manner within epithelial tissues. In the lung bronchial epithelium, most majority of RasV12-transformed cells are apically extruded, whereas noneliminated RasV12 cells are often basally delaminated leading to various noncell-autonomous changes in surrounding environments; macrophages and activated fibroblasts are accumulated, and normal epithelial cells overlying RasV12 cells overproliferate and form a convex multilayer, which is termed a 'dome-like structure'. In addition, basally extruded RasV12 cells acquire certain features of epithelial-mesenchymal transition (EMT). Furthermore, the expression of COX-2 is profoundly elevated in RasV12 cells in dome-like structures, and treatment with the COX inhibitor ibuprofen suppresses the recruitment of activated fibroblasts and moderately diminishes the formation of dome-like structures. Therefore, basal extrusion of single-oncogenic mutant cells can induce a tumor microenvironment and EMT and generate characteristic precancerous lesions, providing molecular insights into the earlier steps of cancer development.


Assuntos
Transformação Celular Neoplásica , Células Epiteliais , Cães , Camundongos , Animais , Células Madin Darby de Rim Canino , Células Epiteliais/patologia , Transformação Celular Neoplásica/metabolismo , Epitélio/metabolismo , Oncogenes , Microambiente Tumoral
4.
Curr Biol ; 32(10): 2144-2159.e5, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35417667

RESUMO

For the maintenance of epithelial homeostasis, various aberrant or dysfunctional cells are actively eliminated from epithelial layers. This cell extrusion process mainly falls into two modes: cell-competition-mediated extrusion and apoptotic extrusion. However, it is not clearly understood whether and how these processes are governed by common molecular mechanisms. In this study, we demonstrate that the reactive oxygen species (ROS) levels are elevated within a wide range of epithelial layers around extruding transformed or apoptotic cells. The downregulation of ROS suppresses the extrusion process. Furthermore, ATP is extracellularly secreted from extruding cells, which promotes the ROS level and cell extrusion. Moreover, the extracellular ATP and ROS pathways positively regulate the polarized movements of surrounding cells toward extruding cells in both cell-competition-mediated and apoptotic extrusion. Hence, extracellular ATP acts as an "extrude me" signal and plays a prevalent role in cell extrusion, thereby sustaining epithelial homeostasis and preventing pathological conditions or disorders.


Assuntos
Apoptose , Competição entre as Células , Trifosfato de Adenosina/metabolismo , Células Epiteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
iScience ; 24(9): 102994, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34485872

RESUMO

At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic. We first show by electron microscopic analysis that characteristic finger-like membrane protrusions are projected from both normal and RasV12 cells at their interface. In addition, FBP17, a member of the F-BAR proteins, accumulates in RasV12 cells, as well as surrounding normal cells, which plays a positive role in the formation of finger-like protrusions and apical elimination of RasV12 cells. Furthermore, cdc42 acts upstream of these processes. These results suggest that the cdc42/FBP17 pathway is a crucial trigger of cell competition, inducing "protrusion to protrusion response" between normal and RasV12-transformed cells.

6.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34087104

RESUMO

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Assuntos
Transformação Celular Neoplásica , Epitélio/crescimento & desenvolvimento , Receptores de Hialuronatos/metabolismo , Colágenos não Fibrilares/metabolismo , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Cães , Ferroptose , Humanos , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial , Camundongos , Espécies Reativas de Oxigênio
7.
Cell Rep ; 31(13): 107832, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610133

RESUMO

Protein ensembles control genome function by establishing, maintaining, and deconstructing cell-type-specific chromosomal landscapes. A plethora of small molecules orchestrate cellular functions and therefore may link physiological processes with genome biology. The metabolic enzyme and hemoglobin cofactor heme induces proteolysis of a transcriptional repressor, Bach1, and regulates gene expression post-transcriptionally. However, whether heme controls genome function broadly or through prescriptive actions is unclear. Using assay for transposase-accessible chromatin sequencing (ATAC-seq), we establish a heme-dependent chromatin atlas in wild-type and mutant erythroblasts lacking enhancers that confer normal heme synthesis. Amalgamating chromatin landscapes and transcriptomes in cells with sub-physiological heme and post-heme rescue reveals parallel Bach1-dependent and Bach1-independent mechanisms that target heme-sensing chromosomal hotspots. The hotspots harbor a DNA motif demarcating heme-regulated chromatin and genes encoding proteins not known to be heme regulated, including metabolic enzymes. The heme-omics analysis establishes how an essential biochemical cofactor controls genome function and cellular physiology.


Assuntos
Regulação da Expressão Gênica , Genoma , Heme/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Modelos Biológicos , Motivos de Nucleotídeos/genética
8.
Curr Biol ; 30(4): 670-681.e6, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004455

RESUMO

When oncogenic transformation or apoptosis occurs within epithelia, the harmful or dead cells are apically extruded from tissues to maintain epithelial homeostasis. However, the underlying molecular mechanism still remains elusive. In this study, we first show, using mammalian cultured epithelial cells and zebrafish embryos, that prior to apical extrusion of RasV12-transformed cells, calcium wave occurs from the transformed cell and propagates across the surrounding cells. The calcium wave then triggers and facilitates the process of extrusion. IP3 receptor, gap junction, and mechanosensitive calcium channel TRPC1 are involved in calcium wave. Calcium wave induces the polarized movement of the surrounding cells toward the extruding transformed cells. Furthermore, calcium wave facilitates apical extrusion, at least partly, by inducing actin rearrangement in the surrounding cells. Moreover, comparable calcium propagation also promotes apical extrusion of apoptotic cells. Thus, calcium wave is an evolutionarily conserved, general regulatory mechanism of cell extrusion.


Assuntos
Sinalização do Cálcio/fisiologia , Transformação Celular Neoplásica/metabolismo , Animais , Cães , Embrião não Mamífero , Células Madin Darby de Rim Canino , Peixe-Zebra
9.
Semin Cancer Biol ; 63: 44-48, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31302236

RESUMO

Several lines of evidence indicate that cell competition can occur in mammals. In particular, at the initial stage of carcinogenesis, normal epithelial cells are able to recognize the neighboring transformed cells and actively eliminate them from epithelial tissues. This implies that normal epithelia have anti-tumor activity that does not involve immune cells, which is termed epithelial defense against cancer (EDAC). In this review article, we summarize recent advances on the underlying molecular machinery of EDAC. In addition, we also describe the molecular mechanisms by which transformed cells escape from EDAC to promote carcinogenesis.


Assuntos
Comunicação Celular/fisiologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/citologia , Neoplasias/patologia , Animais , Morte Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Neoplasias/metabolismo
10.
Dev Cell ; 46(5): 581-594.e4, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30122630

RESUMO

By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome. This multi-omic analysis revealed a GATA-1/heme circuit involving hemoglobin subunits, ubiquitination components, and proteins not implicated in erythrocyte biology, including the zinc exporter Slc30a1. Though GATA-1 induced expression of Slc30a1 and the zinc importer Slc39a8, Slc39a8 dominantly increased intracellular zinc, which conferred erythroblast survival. Subsequently, a zinc transporter switch, involving decreased importer and sustained exporter expression, reduced intracellular zinc during terminal differentiation. Downregulating Slc30a1 increased intracellular zinc and, strikingly, accelerated differentiation. This analysis established a conserved paradigm in which a GATA-1/heme circuit controls trace metal transport machinery and trace metal levels as a mechanism governing cellular differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Eritroblastos/citologia , Fator de Transcrição GATA1/metabolismo , Heme/metabolismo , Zinco/farmacologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Eritroblastos/efeitos dos fármacos , Eritroblastos/metabolismo , Eritropoese/efeitos dos fármacos , Feminino , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma , Transcriptoma
11.
Dev Cell ; 42(3): 213-225.e4, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787589

RESUMO

An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined. A "+9.5-like" element resides in an intron of Samd14 (Samd14-Enh) encoding a sterile alpha motif (SAM) domain protein. Deletion of Samd14-Enh in mice strongly decreased Samd14 expression in bone marrow and spleen. Although steady-state hematopoiesis was normal, Samd14-Enh-/- mice died in response to severe anemia. Samd14-Enh stimulated stem cell factor/c-Kit signaling, which promotes erythrocyte regeneration. Anemia activated Samd14-Enh by inducing enhancer components and enhancer chromatin accessibility. Thus, a GATA-2/anemia-regulated enhancer controls expression of an SAM domain protein that confers survival in anemia. We propose that Samd14-Enh and an ensemble of anemia-responsive enhancers are essential for erythrocyte regeneration in stress erythropoiesis, a vital process in pathologies, including ß-thalassemia, myelodysplastic syndrome, and viral infection.


Assuntos
Anemia/metabolismo , Elementos Facilitadores Genéticos , Eritrócitos/metabolismo , Eritropoese , Fatores de Transcrição GATA/metabolismo , Proteínas/genética , Motivos de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Eritrócitos/citologia , Fatores de Transcrição GATA/genética , Camundongos , Proteínas/metabolismo , Ativação Transcricional
12.
EMBO Rep ; 17(2): 249-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26698166

RESUMO

Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation.


Assuntos
Fator de Transcrição GATA1/metabolismo , Redes Reguladoras de Genes , Hematopoese , Heme/metabolismo , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células CHO , Cricetinae , Cricetulus , Células Eritroides/citologia , Células Eritroides/metabolismo , Camundongos , Dados de Sequência Molecular , Transcriptoma
13.
J Biol Chem ; 288(7): 5027-38, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23269686

RESUMO

A small number of transcription factors, including Oct-3/4 and Sox2, constitute the transcriptional network that maintains pluripotency in embryonic stem (ES) cells. Previous reports suggested that some of these factors form a complex that binds the Oct-Sox element, a composite sequence consisting of closely juxtaposed Oct-3/4 binding and Sox2 binding sites. However, little is known regarding the components of the complex. In this study we show that Sall4, a member of the Spalt-like family of proteins, directly interacts with Sox2 and Oct-3/4. Sall4 in combination with Sox2 or Oct-3/4 simultaneously occupies the Oct-Sox elements in mouse ES cells. Overexpression of Sall4 in ES cells increased reporter activities in a luciferase assay when the Pou5f1- or Nanog-derived Oct-Sox element was included in the reporter. Microarray analyses revealed that Sall4 and Sox2 bound to the same genes in ES cells significantly more frequently than expected from random coincidence. These factors appeared to bind the promoter regions of a subset of the Sall4 and Sox2 double-positive genes in precisely similar distribution patterns along the promoter regions, suggesting that Sall4 and Sox2 associate with such Sall4/Sox2-overlapping genes as a complex. Importantly, gene ontology analyses indicated that the Sall4/Sox2-overlapping gene set is enriched for genes involved in maintaining pluripotency. Sall4/Sox2/Oct-3/4 triple-positive genes identified by referring to a previous study identifying Oct-3/4-bound genes in ES cells were further enriched for pluripotency genes than Sall4/Sox2 double-positive genes. These results demonstrate that Sall4 contributes to the transcriptional network operating in pluripotent cells together with Oct-3/4 and Sox2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Genes Reporter , Camundongos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Células-Tronco/citologia , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...